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Abstract
The factorization method reconstructs a scat-

terer’s domain. This is done by characterizing the
range of one of the factors in an appropriated factor-
ization of the far field operator. Knowing the far field
data of a scatterer with (experimentally) and with-
out (numerically) an inhomogeneity, this method has
been extended to localize inclusions. We present here
some numerical results and a brief explanation of this
extension.

Introduction
We are interested in retrieving the domain D ∈ Rd

(d=2 or 3) of a scatterer with index of refraction
n(x). Thus we consider the Helmholtz equation for
the scattered field us and an index of refraction n(x)
modelling the diffraction of D by an incident wave h

{
∆us + k2n(x)us = −k2n(x)h,
Sommerfeld radiation condition on us.

(1)

In the past two decades some numerical methods for
fast detection have been developed, as the Linear
Sampling Method by Colton et al. (see [1] and ref-
erences) or the Factorization Method by Kirsch [3].
This last one consists in a constrained optimization
problem: ∀z ∈ Rd, z ∈ D ⇐⇒

inf
{∣∣〈Fψ,ψ〉L2(Γ)

∣∣ , 〈Φ∞z , ψ〉L2(Γ) = 1
}
> 0, (2)

F being the far field operator, Γ a part of the unit
sphere Sd

1 and Φ∞z the far field of Green’s function
for (1) with n(x) = 1 (free space). This method
extends to treatment of incomplete data or pene-
trable objects. It takes its name from the use of
a symmetric factorization of the far field operator
: F = GAG?. In a first step it is shown that
z ∈ D ⇐⇒ Φ∞z ∈ R(G), and then that Φ∞z ∈ R(G)
is equivalent to (2).

Gebauer [2] has worked on the reconstruction of
an inhomogeneity with domain Ω included in D by
the knowledge of the Neumann-to-Dirichlet maps in
D with and without the inhomogeneity (modeled re-
spectively by indexes of refraction n1 and n0), respec-
tively named Λ1 and Λ0. The factorization is then

Λ1 − Λ0 = LFL? and their ranges are connected by
the relation R

(
(Λ1 − Λ0)

1
2

)
= R(L). The point of

this factorization is that z ∈ Ω ⇐⇒ vz ∈ R(L),
{vz}z being an suitable family of functions. Main
problem is that constructing this family requires the
knowledge of Green’s function for index of refraction
n0(x).

In this paper we will present a method localizing
inclusions with the single knowledge of far fields ob-
tained with n0 and n1. Some numerical results will
show its efficiency.

1 Construction of the method
We studied a similar configuration but in the far

field case. To avoid the request of the fundamental
solution to (1) with n = n0(x) we tried to reconstruct
Ω with the single knowledge of far field datas for n1

and for n0. If u1 is solution to (1) with n = n1(x)
(the “real measurements”) and u0 is solution to (1)
with n = n0(x) (the scatterer without the inclusion,
obtained by computation), we note their respective
far fields u∞1 and u∞0 (see figure 1).

Figure 1: Sketch of geometry.

Let then F1 and F0 be the associated far field oper-
ators mapping a distribution h ∈ L2(Sd

1) of incoming
plane waves to the resulting far field : Fj : h 7→ u∞j
(j = 0 or 1). Showing that it permits to recover Ω,
we will use the algorithm presented in [3] with

F̃ := F1 − F0.

2 Mathematical justification
There are two problems to adapt the original re-

sult to F̃ . First, as pointed out before, the natural
family of functions suited to characterize Ω requires
the fundamental solution to (1) with n = n0(x) while
we only assume u∞0 to be known. Secondly F1 − F0



yields to a non symmetric factorization. For the sake
of simplicity let us design by : Tjh :=

∫
Rd k

2mjhΦz,
T∞j h :=

∫
Rd k

2mjhΦ∞z (j = 0 or 1), Hh is the Her-
glotz function with kernel h ∈ L2(Sd

1) and we intro-
duce the following isomorphisms of L2(D): A1 :=
I + T0 + T1,A0 := I + T0. Then the “pseudo far field
operator” F̃ can be written this way:

F̃ = (GA −GB)H,

with GA := T∞1 A−1
1 and GB := T∞0 (A−1

0 −A−1
1 ).

Characterization of Ω by R(GA):
Considering the family of functions {Φ∞z }z and

studying the interior transmission problem, we show

z ∈ Ω ⇐⇒ Φ∞z ∈ R(GA).

Link between R(GA) and F̃ :
Main result is that Φ∞z ∈ R(GA) if and only if

inf
{∣∣∣〈F̃ψ, ψ〉L2(Γ)

∣∣∣ , with 〈Φ∞z , ψ〉L2(Γ) = 1
}
> 0.

This usually comes from a symmetric factorization
of F̃ not straightforwardly reachable here. However,
noting by “?” the adjoint operators in the weighted
L2-space L2(|m1|,Ω), we have :

F̃ = (GA −GB)C?
m1
A?

1G
?
A,

where C?
m1
h = 1

γk2
m1
|m1|h and γ = eiπ/4√

8πk
if d = 2, or

γ = 1
4π if d = 3. This form shows a symmetric part

in GA but with a perturbation term in GB. So:
• Assume Φ∞z /∈ R(GA). Then there exists a se-
quence Ψn such that 〈Φ∞z ,Ψn〉 = 1 and |A?

1G
?
AΨn| →

0 (see [3]). Continuity of operators leads to∣∣∣
〈
Ψn, F̃Ψn

〉∣∣∣ being majored by

≤ c1 (|A?
1G

?
AΨn|+ |G?

BΨn|) |A?
1G

?
AΨn|.

By definition of GA, |A?
1G

?
AΨn| = |T∞?

1 Ψn| and by
definition of GB we have |G?

BΨn| ≤ c2|T∞?
0 Ψn|. Now

if we evaluate these adjoints we find T∞?
1 = m1

|m1|k
2H

and T∞?
0 = m0

|m1|k
2H. This shows that when |T∞?

1 Ψn|
tends to 0, then |T∞?

0 Ψn| tends to 0 too, and thus
(|A?

1G
?
AΨn|+ |G?

BΨn|) vanishes.
• Reversely, assume Φ∞z ∈ R(GA). Then there
exists ϕ0 such that GAA1ϕ0 = Φ∞z . Let us
take Ψ satisfying 〈Ψ,Φ∞z 〉 = 1. The continu-
ity of operators leads to the following minora-
tion :

∣∣∣
〈
Ψ, F̃Ψ

〉∣∣∣ =
∣∣〈(G?

A −G?
B)Ψ, C?

m1
A?

1G
?
AΨ

〉∣∣

≥ |A?
1G

?
AΨ|2 (

c3 − c4|G?
BΨ||G?

AΨ|−1
)
.

Since |A?
1G

?
AΨ|2|ϕ0|2/|ϕ0|2 ≥ 1/|ϕ0|2 by assumption

on ϕ0 and Ψ, this is strictly positive if |G?
BΨ||G?

AΨ|−1

is small enough. This is achieved for |m0| small in
comparison to |m1|.

3 Numerical results
We simulate non symmetric 2-D shapes, n0 and n1

being constant or piecewise constant, and Ω being
one or more non connected non symmetric shapes.
Figure 2 shows a sample reconstruction of an inclu-
sion with 5% noise on the “measured results” with
the following parameters : k = 3, n0 = 1.2, n1 = 1.2
in D \ Ω, n1 = 2.2 in Ω, and n1 = n0 = 1 out of D.

Figure 2: Localization of inclusion.

Conclusion
We have extended the factorization method to lo-

cate inclusions by the single knowledge of the far
field data of the including object with and without
this inclusions with encouraging numerical results.
The present demonstration and our numerical exper-
iments show that the localization depends on the con-
trast between the object and the inclusion. An im-
provement would be a control over this dependence
to achieve a better localization with small contrasts.
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